Panoramic Radiographs:
Technique & Anatomy Review

Introduction
The purpose of the Panoramic Radiographs: Technique & Anatomy Review course is to provide students and clinicians with a review of panoramic imaging techniques in order to take diagnostic images. The course will review normal and abnormal radiographic anatomy and structures, as well as various technique errors and how to correct them.

Conflict of Interest Disclosure Statement
• The authors report no conflicts of interest associated with this course.

ADA CERP
The Procter & Gamble Company is an ADA CERP Recognized Provider.

ADA CERP is a service of the American Dental Association to assist dental professionals in identifying quality providers of continuing dental education. ADA CERP does not approve or endorse individual courses or instructors, nor does it imply acceptance of credit hours by boards of dentistry.

Concerns or complaints about a CE provider may be directed to the provider or to ADA CERP at: http://www.ada.org/cerp

Approved PACE Program Provider
The Procter & Gamble Company is designated as an Approved PACE Program Provider by the Academy of General Dentistry. The formal continuing education programs of this program provider are accepted by AGD for Fellowship, Mastership, and Membership Maintenance Credit. Approval does not imply acceptance by a state or provincial board of dentistry or AGD endorsement. The current term of approval extends from 8/1/2013 to 7/31/2021. Provider ID# 211886
Course Contents
• Overview
• Learning Objectives
• Glossary
• Introduction
• Review of Normal Anatomical Landmarks and Variations
• Technique
 • Equipment Preparation
 • Patient Preparation
 • Patient Positioning
• Causes and Appearance of Errors in Technique
• Use of Panoramic Imaging for Patient Education
• Issues Related to Standard of Care: ALARA & ALADA
• Conclusion
• Course Test
• References
• About the Authors

Overview
The purpose of the course is to provide students and clinicians with a review of panoramic imaging techniques in order to take diagnostic images. Topics include equipment preparation, patient preparation, and patient positioning. Taking a diagnostic image the first time prevents additional patient exposure to radiation by following the principles of ALARA (As Low as Reasonably Achievable). The course will review normal and abnormal radiographic anatomy and structures, as well as various technique errors and how to correct them.

Learning Objectives
Upon completion of this course, the dental professional should be able to:
• Review normal anatomy observed in panoramic images.
• Determine the cause and appearance of various technique errors.
• Discuss the importance of using radiographs for patient education.
• Understand the benefit of using panoramic radiographs to fulfill the principles of ALARA (As Low As Reasonably Achievable).

Glossary
Radiolucent – Refers to structures that are less dense and permit the x-ray beam to pass through them. Radiolucent structures appear dark or black in the radiographic image.

Radiopaque – Refers to structures that are dense and resist the passage of x-rays. Radiopaque structures appear light or white in a radiographic image.

Bony Landmarks
Anterior nasal spine – a radiopaque V-shaped structure in the maxilla that intersects the floor of the nasal cavity and the nasal septum.

External auditory meatus – a round radiolucent passage way to the ear (bilateral).

Genial tubercle – a round/oval radiopaque structure inferior to the mandibular incisors.

Hard palate – a radiopaque bony structure that separates the nasal cavity from the oral cavity.

Internal oblique ridge – a radiopaque structure which is located on the internal surface of the mandible and proceeds downward to become the mylohyoid ridge (bilateral).

Maxillary sinus – a radiolucent area located above the apices of the maxillary premolars and molars. The floor of the maxillary sinus often appears as a thin wavy radiopaque line (bilateral).

Mandibular canal – a radiolucent tube-like structure outlined by two radiopaque lines that starts at the mandibular foramen and proceeds to the mental foramen (bilateral).

Mandibular condyle – a rounded radiopaque structure, which extends from the ramus and articulates with the glenoid fossa (bilateral).

Mental foramen – a round/oval radiolucent structure inferior to the mandibular premolars (bilateral).

Nasal septum – a radiopaque vertical bony structure that divides the nasal cavity into two.

Orbit – a radiolucent area superior to the maxillary sinus (bilateral).

Radiolucent – Refers to structures that are less dense and permit the x-ray beam to pass through them. Radiolucent structures appear dark or black in the radiographic image.

Radiopaque – Refers to structures that are dense and resist the passage of x-rays. Radiopaque structures appear light or white in a radiographic image.

Bony Landmarks
Anterior nasal spine – a radiopaque V-shaped structure in the maxilla that intersects the floor of the nasal cavity and the nasal septum.

External auditory meatus – a round radiolucent passage way to the ear (bilateral).

Genial tubercle – a round/oval radiopaque structure inferior to the mandibular incisors.

Hard palate – a radiopaque bony structure that separates the nasal cavity from the oral cavity.

Internal oblique ridge – a radiopaque structure which is located on the internal surface of the mandible and proceeds downward to become the mylohyoid ridge (bilateral).

Maxillary sinus – a radiolucent area located above the apices of the maxillary premolars and molars. The floor of the maxillary sinus often appears as a thin wavy radiopaque line (bilateral).

Mandibular canal – a radiolucent tube-like structure outlined by two radiopaque lines that starts at the mandibular foramen and proceeds to the mental foramen (bilateral).

Mandibular condyle – a rounded radiopaque structure, which extends from the ramus and articulates with the glenoid fossa (bilateral).

Mental foramen – a round/oval radiolucent structure inferior to the mandibular premolars (bilateral).

Nasal septum – a radiopaque vertical bony structure that divides the nasal cavity into two.

Orbit – a radiolucent area superior to the maxillary sinus (bilateral).
Styloid process – a long, pointed radiopaque structure that extends from the temporal bone anterior to the mastoid process (bilateral).

Submandibular fossa – a radiolucent area toward the middle of the mandible that lies inferior to the mylohyoid line (bilateral).

Zygomatic process – a “J or U” shaped radiopaque structure in the maxilla that lies superior to the maxillary first molars (bilateral).

Airspaces

1. **Nasopharyngeal air space** – a radiolucent area that extends from the nasal cavity to the pharynx.

2. **Glossopharyngeal air space** – a radiolucent area that extends posteriorly from the tongue and oral cavity to the pharynx.

3. **Palotoglossal air space** – a radiolucent band that lies superior to the apices of the maxillary teeth and inferior to the hard palate.

Introduction

A panoramic image displays the patient's maxillary and mandibular oral and facial structures across a flat surface. According to Iannucci & Howerton, “panoramic imaging is an extraoral technique that is used to examine the maxilla and mandible on a single projection.” Panoramic imaging was first introduced in the 1930s, but became more popular as a diagnostic tool in the 1960s. During the 80s, panoramic imaging transitioned to a digital format, which had the advantage of less radiation as well as immediate viewing of the image for patient education. Panoramic imaging enables the dentist to diagnose the entire dentition and facial structures that are not visible in a full-mouth series. The technique is considered part of the standard of care and is popular due to the relative ease of use, wide scope of examination, and low radiation dose. The guidelines presented by the American Dental Association (ADA) indicate that a panoramic image and posterior bitewings are considered an acceptable full mouth series in certain cases.

Dental professionals must understand the difference between normal anatomical landmarks and abnormal findings, such as artifacts or pathology, which may be present on a panoramic image when viewing both the mandible and maxilla in the one projection. It is recommended to review the image systematically in order not to overlook anything that might be a deviation from normal. The clinician may utilize the technique that they are comfortable using; however, it must be consistent and ensure that all diagnostic information is read. For instance, Perschbacher, recommends the following sequence: 1) review osseous structures and surrounding soft tissues, 2) review the alveolar process, and 3) review the teeth.

It is important to evaluate the image bilaterally to look for symmetry, or asymmetry, which can indicate a pathological condition. For that reason, the methods suggested by Langland, Langlais, and Preece, which divides the image into 6 different zones (Figure 1), is a valuable tool for use during interpretation.

Review of Normal Anatomical Landmarks and Variations

It is important to understand the landmarks normally seen on panoramic images in order to prevent misdiagnosis of a radiopaque or radiolucent area. For the purposes of this course, we will focus on the structures that are most commonly viewed in panoramic images. For additional information, a review of the anatomic structures can be found in the article by Farman and the text by Iannucci & Howerton.

Technique

Equipment Preparation

As with any dental procedure, it is important to properly prepare the equipment beforehand. Equipment preparation includes items such as the receptor, bite block, exposure settings, and patient selection (Table 2). If the panoramic image is being taken with a direct digital system, which transfers the image directly to the computer, it is important that the proper patient is selected in the electronic health record prior to the exposure. Otherwise, the image will be stored in the wrong location.

Setting the proper exposure time prior to beginning the procedure will help improve efficiency and reduce the possibility of over-
Figure 1. Zones of Interpretation. Image source: Courtesy of MH & Dr. Iwata.

Figure 2. Normal Anatomical Landmarks. (Refer to the glossary for the definition of each structure shown).
Table 1. Zones of Panoramic Image Interpretation.³

| Zone 1: Dentition |
|------------------|--|
| | • Teeth arranged with an upward smile-like curve |
| | • Anterior teeth should not be too large or small |
| | • Posterior teeth should be evenly sized without excessive overlap |
| | • Apices/crowns of teeth should be visible |

| Zone 2: Nose & Sinus |
|----------------------|--|
| | • Inferior turbinates and surrounding air spaces visible |
| | • Soft tissue of nose should not be visible |
| | • Shadow of hard palate will be seen in maxillary area |
| | • Tongue should be in contact with hard palate |

| Zone 3: Mandibular Body |
|-------------------------|--|
| | • Inferior border of mandible should be continuous and smooth |
| | • Ghost image of hyoid should not be visible |
| | • Midline area should have proper proportions |

| Zone 4: Condyles |
|-----------------|--|
| | • Condyles should be centered within the area of the zone |
| | • Condyles should be of equal size and on same horizontal plane |

| Zone 5: Ramus & Spine |
|------------------------|--|
| | • Ramus of mandible should be similar width bilaterally |
| | • Spine, if seen, may be present as long as it doesn't superimpose over the ramus |
| | • If spine is present, the distance between the ramus and spine should be equivalent on both sides |

| Zone 6: Hyoid Bone |
|-------------------|--|
| | • Hyoid bone should appear as a bilateral, double image with equal proportions |
| | • Hyoid image may touch the mandible, but should not spread across it |
Figure 3. Example of Pathology and Variations of Normal. The patient’s chief complaint was pain and popping near the TMJ. The panoramic image indicates a flattened condyle and significant wear of the glenoid fossa of the temporal bone due to constant force from bruxism and clenching. It was also noted that the patient has very pronounced styloid processes (bilaterally). (Refer to the glossary for the definition of each structure shown).
Image source: Courtesy of AB & Dr. Iwata.

Table 2. Equipment Preparation.³

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Analog/PSP plate placed in cassette according to guidelines.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select patient</td>
<td>Direct digital sensor – have the correct patient assigned in computer before setting up.</td>
</tr>
<tr>
<td>Bite-block</td>
<td>Cover with disposable plastic covering or use a sterilized bite block made of impervious material between patients.</td>
</tr>
<tr>
<td>Exposure Settings</td>
<td>Set according to the manufacturer’s recommendations, which are pre-programmed according to the size of the patient. Most machines have a single setting for pediatric patients and two options for adult patients (according to their size). Newer machines do not require that the clinician selects specific exposure times and doses for each patient.</td>
</tr>
<tr>
<td>Height</td>
<td>Adjust entire machine to the correct height for the patient and any other moveable parts as necessary.</td>
</tr>
</tbody>
</table>
exposing the patient to unnecessary radiation. The results of one survey of general dentists found that clinicians did not always change the exposure time related to the patient's need. In fact 74% of respondents used the same exposure time for all patients. In order to properly protect patients, the exposure setting must be tailored for each individual patient. Most machines have settings that can be adjusted according to the stature of the patient. For example, when imaging a pediatric patient, the child exposure setting should be selected. Exposure settings should be adjusted accordingly as height and mass increases. There are usually two settings available for adult patients and one for children, which makes it possible to tailor the amount of radiation being produced.

Patient Preparation
Patient preparation is extremely important for ensuring that a high-quality image is produced and that errors are avoided (Table 3). For instance, incorrect patient preparation can lead to “ghost images” which can render the radiographic image undiagnostic. While ghost images often occur due to metallic objects, they can also occur due to anatomical structures located outside the image layer or focal trough. Ghost images always appear higher and distorted on the opposite side of the radiographic image (see Figure 4). Some errors are unavoidable due to the patient's stature, facial asymmetry, or difficulty following instructions.

An important item to include when preparing the patient is the use of a lead apron, which is recommended for all radiographic procedures. Lead aprons help provide protection for radiosensitive tissues in the neck, chest, reproductive areas, and blood forming tissue. In addition, lead aprons stop nearly 98% of scattered radiation from reaching reproductive organs. There are lead-free aprons that use an alloy material instead of lead. They are 50% lighter and safer for patients and clinicians because they are lead-free.

While thyroid collars are not indicated for panoramic imaging, they are effective for use during intraoral imaging, because they have been shown to stop 92% of scatter radiation. One study revealed that only 2% of the general dentists surveyed report using a lead apron with a thyroid shield prior to taking radiographs.

Patient Positioning
In order to obtain diagnostically useful images, patients must be positioned carefully within the image layer or focal trough, which is a three-dimensional curved zone (Figure 5). Structures found within the image layer will be reasonably well-defined. The patient must be positioned correctly so that the proper structures are aligned within the image layer.

If patient positioning is incorrect, errors are likely to occur. Patient positioning errors are the most common type of error when performing panoramic radiography. For instance, in a study evaluating 460 panoramic radiographs, careless head positioning accounted for 38% of the errors. Patient positioning errors accounted for 85% in a sample of 1,813 panoramic radiographs.

Table 3. Patient Preparation Guidelines.

<table>
<thead>
<tr>
<th>Jewelry</th>
<th>All necklaces, piercings (earrings, tongue rings, etc.) and jewelry in the head and neck regions need to be removed prior to exposure.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal objects</td>
<td>Items such as headbands, bobby pins, hair clips, hearing aids, etc. must be removed prior to exposure. Removable partial dentures and orthodontic appliances should be taken out prior to imaging.</td>
</tr>
<tr>
<td>Lead Apron</td>
<td>Apron must not have a thyroid collar and should be placed properly so it does not block the x-ray beam.</td>
</tr>
</tbody>
</table>
The most common patient positioning error occurs when the tongue is not placed close enough to the palate. This may be due to the patient misunderstanding the instructions and only placing the tip of their tongue on the palate. Incorrect positioning of the tongue creates radiolucency near the apices on the maxilla, which makes diagnosis of periodontitis and root resorption challenging.

It is helpful to note that each manufacturer provides specific operation instructions in the manual that accompanies the unit. It is worth the time and effort for each team member to become acquainted with the contents of the manual. While the instructions make panoramic imaging easy to perform well, it is equally as easy to perform badly when manufacturers’ instructions are not followed. Proper patient positioning (Table 4) will help reduce the possibility of errors in panoramic imaging.

Figure 4. Appearance of Ghost Image. The patient’s earrings were not removed prior to imaging. Therefore, a ghost image is present. In the example, the image of the actual left earring is on the right side and the ghost image of the left earring is on the left side of the image. Ghost images appear distorted, higher, and on the opposite side of the panoramic radiograph. The other error that can be observed in the panoramic image, is that the chin is too low. This causes the spine to be more pronounced on both sides of the image.

Image source: BR L. Iwata, DDS.

Figure 5. Example of correct patient positioning with the tongue pressed against the palate, teeth in the groove of the bite-block, and the indicator light for the midsagittal plane centered and perpendicular to the floor.
As mentioned previously, the most common error is the failure to position the tongue directly against the hard palate.2,5,10 As is noted in Figure 8, the maxillary roots of the anterior teeth are not visible, due to the fact that the tongue was not flat against the hard palate. The radiolucent area between the dorsum of the tongue and the hard palate is the palatoglossal air space, which is more pronounced.

Causes and Appearance of Errors in Technique

It is important for the clinician to be able to understand errors when they occur and how to correct them. Table 5 lists various errors that can occur with panoramic imaging. It also addresses the radiographic appearance of the errors and solutions for correcting the problem.

![Table 4. Patient Positioning Guidelines.5,8](image)

| Standing/Sitting | • If patient is able to stand, have them stand erect without the spine being slumped.
| | • If patient is seated, they should sit as upright as possible.
| | • It helps to do a test run with the panoramic machine to make sure it will not hit the patient’s shoulders. |
| Mount position | • Patient needs to place maxillary/mandibular incisors correctly on bite block in order to achieve proper alignment of the teeth.
| | • Most units have a notch in the bite block indicating the proper location for the patient to bite. |
| Midsagittal Plane| • The patient’s head must be straight & not tilted.
	• The midsagittal plane must be kept perpendicular to the floor.
Frankfort Plane	• Keep the Frankfort plane parallel with the floor.
Tongue	• Instruct the patient to place their ENTIRE tongue on the hard palate and leave it there for the duration of the exposure.
Lips	• Instruct patient to keep their lips together for the duration of the exposure.
Eye	• Have patient close their eyes so they do not follow the movement of the tube head.
Table 5. Patient Positioning Errors.

<table>
<thead>
<tr>
<th>#</th>
<th>Error</th>
<th>Appearance on Image</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ghost images</td>
<td>Ghost image resembles real image</td>
<td>Have patient remove all radiodense objects before exposure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Projected on opposite side of film and is higher</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lead apron artifact</td>
<td>Radiopaque, cone-shaped artifact in center of image</td>
<td>Use lead apron without thyroid collar</td>
</tr>
<tr>
<td>3</td>
<td>Patient lips not closed</td>
<td>Dark radiolucent shadow around anterior teeth</td>
<td>Remind patient to close lips around bite block</td>
</tr>
<tr>
<td>4</td>
<td>Patient chin too high</td>
<td>Condyles may not be visible</td>
<td>Keep Frankfort plane parallel with floor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maxillary incisors appear blurred and magnified</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse smile line (frown)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Patient chin too low</td>
<td>Exaggerated smile line (joker)</td>
<td>Keep Frankfort plane parallel with floor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Condyles higher on image</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mandibular incisors appear blurred; roots appear short</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Patient too far forward</td>
<td>Anterior teeth are narrowed</td>
<td>Make sure patient's teeth are in bite block notches</td>
</tr>
<tr>
<td></td>
<td>(anterior to focal trough)</td>
<td>Spine is visible on film</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Patient too far back</td>
<td>Anterior teeth appear magnified</td>
<td>Make sure patient's teeth are in bite block notches</td>
</tr>
<tr>
<td></td>
<td>(posterior to focal trough)</td>
<td>Ramus isn't entirely visible</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Patient head not centered</td>
<td>Ramus and posterior teeth appear unequally magnified</td>
<td>Keep midsagittal plane perpendicular to floor & ensure indicating light is located at center of patient's nose</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side farthest from receptor appears magnified</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side closest to receptor appears smaller</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Example: Patient turned to right will produce image with magnification on left side and overlapping of contacts</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Patient spine isn't straight</td>
<td>Cervical spine appears as radiopacity in center of image</td>
<td>Have patient stand as tall as possible. Seat patient if necessary</td>
</tr>
</tbody>
</table>

Another error that is visible in Figure 8 is that the chin position is too low causing the spine to be more pronounced on the image. In addition, the mandibular incisors appear blurry with short roots.1,10

Most patients are able to tolerate the panoramic procedure with ease. However, certain patients will have challenges with the imaging process due to difficulty maintaining the proper position. For example, elderly
Use of Panoramic Imaging for Patient Education

With the abundance of information readily available on the internet, patients are becoming more informed about health care. The dental patient is more apt to ask why radiographic images are necessary instead of just agreeing to the treatment. Because patients may be unable to stand for the duration of the image. Thankfully, some panoramic imaging units allow for the patient to sit. If the patient is seated during the procedure, they must be reminded to sit as upright as possible in order to prevent slumping, which can cause superimposition of the spine over the anterior teeth.

Figure 6. Example of incorrect patient positioning, because the midsagittal plane is not centered along the midline of the face.

Figure 7. The patient is positioned too far forward, because the canine indicator light is posterior to the canine.

Figure 8. Patient Positioning.
of this, the dental professional must be able to accurately interpret the panoramic image and educate the patient. It is important to have the patient actively involved with their treatment. Incorporating this information into the patient’s appointment will help improve their understanding of their oral condition and increase the perceived value of the appointment. Patients desire to be informed about their health and treatment options and taking time to explain and educate the patient will help meet this expectation.

According to Rondon, panoramic imaging is helpful for the following situations (Table 6):

Table 6. Uses for Panoramic Images.

- General surveys of oral health
- Best radiographic supplements for surgical procedures
- Evaluations for orthodontic treatment
- Pediatric growth and development
- Chronological dental eruption
- Evaluating cysts or neoplastic lesions
- Measurements for implantology
- Historical documentation
- Evaluation of TMJ

Issues Related to Standard of Care: ALARA & ALADA
With the increased use of diagnostic radiation within healthcare, it is imperative that dental radiography is used with regard to the overall dose patients may be receiving. The concept of ALARA, As Low As Reasonably Achievable, helps ensure that the radiation dose is kept as low as possible to achieve the desired outcome. In fact, there is a call for imaging specialists to educate colleagues regarding the difference between a “beautiful” image and a “diagnostically acceptable” image, which is the premise of the new concept ALADA, or “as low as diagnostically acceptable.”

It is up to the dental radiographer to determine the type of examination and number of images to take according to the individual needs of each patient. The American Dental Association (ADA) has created a guide for determining when to perform various dental radiographic examinations. Table 7 outlines the effective radiation doses for various dental radiographic examinations. This provides perspective on the amount of radiation required for a full-mouth intraoral series compared to a panoramic image.

According to White et al., the public is more knowledgeable of the importance of radiation protection, especially at high doses, because of the correlation between radiation and other childhood cancers, like leukemia. This is a concern because children are more susceptible to cancers due to radiation exposure as to the high turnover rate of cells during replication. The Image Gently in Dentistry campaign has been designed to improve education and awareness of radiation safety in pediatric maxillofacial radiology. One of the educational tools used in the campaign is a “Six-Step Plan” to help minimize radiation to children (Table 8).

Conclusion
Dental radiographs, especially panoramic images, provide valuable information for both the clinician and the patient. The information contained within a panoramic image is helpful for screening, diagnosis and patient education. As with any type of ionizing radiation, proper safety measures should be taken to ensure that both the patient and operator are protected. In addition, there is a need to be aware of the total dose of radiation patients are receiving through various medical and dental procedures. Through the concepts described in this course, dental radiographers can take steps to reduce patient radiation and to produce diagnostic panoramic images consistently.
Figure 9. Interpretation.
This panoramic image was taken when the patient was 9 years old. The clinician explained the process of tooth development to the parent and the possible need for orthodontic treatment in the future, due to the rotation of teeth #22 & 27.

Figure 10. Anatomy.
The same patient (shown in Figure 9) is now 15 years old. Clinician explained that the wisdom teeth may need to be extracted and was able to involve the parent and patient by explaining what was seen on the panoramic image. This is a great visual to help understand the current condition, as well as comparing the panoramic image from 6 years ago. As shown, teeth #22 & 27 are still rotated but are not causing problems at this time.
Figure 11. Internal Resorption.
Patient came into the office with a complaint about their front tooth. After taking the panoramic image, it was noted that #9 had resorption on the root. The dentist then requested a periapical radiograph to evaluate the condition more closely.

Figure 12. PA of #9 – Confirms internal resorption, which was observed in the panoramic image in Figure 11.
Table 7. Effective Radiation Doses for Dental Radiographic Examination.13

<table>
<thead>
<tr>
<th>Radiographic Exam</th>
<th>Average Effective Dose (Adults) in Millisieverts (mSv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital panoramic radiography</td>
<td>0.01</td>
</tr>
<tr>
<td>Intraoral X-Ray</td>
<td>0.005</td>
</tr>
<tr>
<td>Full mouth series (18 images) with PSP or F-speed film and rectangular collimation</td>
<td>0.035</td>
</tr>
<tr>
<td>Bitewing (4 images) with PSP plates or F-speed film and rectangular collimator</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Table 8. Six-step plan to minimize radiation exposure to children.14

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Select x-rays for patient's individual needs, not as a routine</td>
</tr>
<tr>
<td>2</td>
<td>Use the fastest image receptor possible</td>
</tr>
<tr>
<td>3</td>
<td>Collimate the x-ray beam to expose the area of interest only (rectangular collimation is best)15</td>
</tr>
<tr>
<td>4</td>
<td>Use thyroid collars</td>
</tr>
<tr>
<td>5</td>
<td>Reduce exposure time according to child's size</td>
</tr>
<tr>
<td>6</td>
<td>Use CBCT only when necessary</td>
</tr>
</tbody>
</table>
Course Test Preview
To receive Continuing Education credit for this course, you must complete the online test. Please go to: www.dentalcare.com/en-us/professional-education/ce-courses/ce533/start-test

1. The maxillary sinus appears on the panoramic image as a radiopaque structure. The maxillary sinus is located over the maxillary premolars and molars.
 A. Both statements are TRUE.
 B. Both statements are FALSE.
 C. The first statement is TRUE, the second statement is FALSE.
 D. The first statement is FALSE, the second statement is TRUE.

2. This anatomical landmark appears as a J or U-shaped radiopacity over the maxillary first molars.
 A. Genial Tubercle
 B. Zygomatic Process
 C. Anterior Nasal Spine
 D. Hard Palate

3. An advantage of digital panoramic imaging is that the patient is subjected to less radiation.
 A. True
 B. False

4. According to the ADA, which of the following meets the requirements for a “Complete Radiographic Series?”
 A. A Panoramic Image and Posterior Bitewings
 B. 4 Bitewings and 3 Periapical Images
 C. 2 Bitewings and 4 Periapical Images
 D. Panoramic image

5. When the clinician interprets a panoramic image, it is important that they can differentiate between normal and abnormal anatomical landmarks. A radiolucent structure will appear white on a panoramic image.
 A. Both statements are TRUE.
 B. Both statements are FALSE.
 C. The first statement is TRUE, the second statement is FALSE.
 D. The first statement is FALSE, the second statement is TRUE.

6. It is important for the clinician to be systematic when viewing the panoramic image to prevent overlooking anything that might be a deviation from normal. The dentition will be visible in Zone 2 when utilizing this systematic approach.
 A. Both statements are TRUE.
 B. Both statements are FALSE.
 C. The first statement is TRUE, the second statement is FALSE.
 D. The first statement is FALSE, the second statement is TRUE.

7. Which of the following statements regarding Zone 5 is correct?
 A. The distance between the ramus and spine should be greater on the left side.
 B. Spine may be present and it is acceptable to be superimposed over the ramus.
 C. The width of the ramus should be similar on both sides of the image.
8. **This round radiopaque landmark is observed inferior to the mandibular incisors.**
 A. Internal Oblique Ridge
 B. Zygomatic Process
 C. Genial Tubercle
 D. Mandibular Canal

9. **To allow passage of the x-ray beam, the lead apron should not have a thyroid collar. In preparation to take the panoramic image, the clinician needs to have the patient remove jewelry, bobby pins, hearing aids, etc. from the head and neck.**
 A. Both statements are TRUE.
 B. Both statements are FALSE.
 C. The first statement is TRUE, the second statement is FALSE.
 D. The first statement is FALSE, the second statement is TRUE.

10. **Lead aprons help provide protection to which of the following radiosensitive areas?**
 A. Blood forming tissues
 B. Neck and chest areas
 C. Reproductive organs
 D. All of the above.

11. **A ghost image in a panoramic image appears __________.**
 A. on same side and lower on the image
 B. on same side and higher on the image
 C. on opposite side and lower on the image
 D. on opposite side and higher on the image

12. **The anatomical landmarks of the __________ are the floor of the orbit and the external auditory meatus.**
 A. Midsagittal Plane
 B. Frankfort Plane
 C. Focal Trough

13. **What patient positioning error occurred if the anterior teeth are narrowed and the spine is visible on the film?**
 A. Patient position was anterior to the focal trough
 B. Patient position was posterior to the focal trough
 C. Patient’s lips are not closed
 D. Patient’s head not centered

14. **When positioning a patient, the __________ must be kept perpendicular to the floor.**
 A. Frankfort Plane
 B. Midsagittal Plane
 C. Focal Trough

15. **It is important to have the patient place the tongue flat against the hard palate because __________.**
 A. no problem is ever observed
 B. it causes the apices of the mandibular teeth to be visible
 C. it causes the apices of the maxillary teeth to be visible
16. A panoramic image can be an effective tool for patient education. Panoramic images are helpful to determine if the wisdom teeth are properly developing.
 A. Both statements are TRUE.
 B. Both statements are FALSE.
 C. The first statement is TRUE, the second statement is FALSE.
 D. The first statement is FALSE, the second statement is TRUE.

17. ALARA stands for ____________.
 A. Any Low Amount of Retakes are Acceptable
 B. American League of Applied Radiology Association
 C. As Low As Reasonably Achievable
 D. As Long As Restrictions are Applied

18. The Image Gently in Dentistry campaign developed the “Six-Step Plan” to help minimize exposure in which patient population?
 A. Pediatric patients
 B. Pregnant patients
 C. Geriatric patients
 D. Underserved patients
References

About the Authors

Shelly Withers, RDH, MS

Shelly Withers is an Associate Professor at the Loma Linda University School of Dentistry where she teaches classes in research and radiology. She obtained an MS in Health Professions Education and a BS in Dental Hygiene from Loma Linda University. She is currently pursuing a doctoral degree in Psychology. Her research interests include caries assessment technology, re-mineralization techniques and educational psychology. She is a member of Sigma Phi Alpha National Dental Hygiene Honor Society, ADHA and ADEA.

Email: swithers@llu.edu

Marilynn Heyde, RDH, MPH

Marilynn Heyde is a graduate from Loma Linda University in 1974 with a BS in Dental Hygiene. In 2000, Marilynn completed a Master’s in Public Health Education. Marilynn’s career has included private practice, public health dental education, and dental hygiene education. At this time, Marilynn is an Associate Professor at Loma Linda University, teaching dental hygiene students preclinical courses and anesthesia. Marilynn has taught dental hygienists a variety of courses in the field of dental hygiene over the past 17 years.

Email: mheyde@llu.edu